Estimation of IRT graded response models: limited versus full information methods.

نویسندگان

  • Carlos G Forero
  • Alberto Maydeu-Olivares
چکیده

The performance of parameter estimates and standard errors in estimating F. Samejima's graded response model was examined across 324 conditions. Full information maximum likelihood (FIML) was compared with a 3-stage estimator for categorical item factor analysis (CIFA) when the unweighted least squares method was used in CIFA's third stage. CIFA is much faster in estimating multidimensional models, particularly with correlated dimensions. Overall, CIFA yields slightly more accurate parameter estimates, and FIML yields slightly more accurate standard errors. Yet, across most conditions, differences between methods are negligible. FIML is the best election in small sample sizes (200 observations). CIFA is the best election in larger samples (on computational grounds). Both methods failed in a number of conditions, most of which involved 200 observations, few indicators per dimension, highly skewed items, or low factor loadings. These conditions are to be avoided in applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Further Empirical Results on Parametric Versus Non-Parametric IRT Modeling of Likert-Type Personality Data.

Chernyshenko, Stark, Chan, Drasgow, and Williams (2001) investigated the fit of Samejima's logistic graded model and Levine's non-parametric MFS model to the scales of two personality questionnaires and found that the graded model did not fit well. We attribute the poor fit of the graded model to small amounts of multidimensionality present in their data. To verify this conjecture, we compare t...

متن کامل

Separate Versus Concurrent Estimation of IRT Item Parameters in the Common Item Equating Design

DOCUMENT RESUME TM 030 621 Hanson, Bradley A.; Beguin, Anton A. Separate versus Concurrent Estimation of IRT Item Parameters in the Common Item Equating Design. American Coll. Testing Program, Iowa City, IA. ACT-RR-99-8 1999-12-00 36p. ACT Research Report Series, PO Box 168, Iowa City, IA 52243-0168. Reports Evaluative (142) MF01/PCO2 Plus Postage. *Equated Scores; Estimation (Mathematics); *It...

متن کامل

How Item Response Theory can solve problems of ipsative data

.......................................................................................................... 3 Introduction ..................................................................................................... 4 Single-stimulus response format ................................................................... 4 Response biases affecting single-stimulus items ........................

متن کامل

Marginal Maximum Likelihood Estimation of Item Response Models in R

Item response theory (IRT) models are a class of statistical models used by researchers to describe the response behaviors of individuals to a set of categorically scored items. The most common IRT models can be classified as generalized linear fixedand/or mixed-effect models. Although IRT models appear most often in the psychological testing literature, researchers in other fields have success...

متن کامل

Better assessment of physical function: item improvement is neglected but essential

INTRODUCTION Physical function is a key component of patient-reported outcome (PRO) assessment in rheumatology. Modern psychometric methods, such as Item Response Theory (IRT) and Computerized Adaptive Testing, can materially improve measurement precision at the item level. We present the qualitative and quantitative item-evaluation process for developing the Patient Reported Outcomes Measureme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Psychological methods

دوره 14 3  شماره 

صفحات  -

تاریخ انتشار 2009